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Outline 

1.  Applications of DNA Sequencing 
–  Basic Concepts 
–  Applications to Autism Genetics 

 
2.  “Functional” Assays 

– RNA-seq 
– Methyl-seq 
– ChIP-seq 
– Single Cell Sequencing 



Milestones in DNA Sequencing 

Applied Biosystems 
 

Sanger Sequencing 
 

768 x 1000 bp reads / day = 
~1Mbp / day 

(TIGR/Celera, 1995-2001) 



Inside the NY Genome Center 
Sequencing Capacity Exceeds 2 Pbp/year (18,000 genomes / year) 



Massively Parallel Sequencing 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.youtube.com/watch?v=l99aKKHcxC4 

Illumina HiSeq 2000 
Sequencing by Synthesis  

 
>60Gbp / day 

1. Attach 

2. Amplify 

3. Image 



Personal Genomics 
How does your genome compare to the reference? 

Heart Disease 

Cancer 

Creates magical 
technology 



Typical sequencing coverage 
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Imagine raindrops on a sidewalk!

We want to cover the entire sidewalk but each drop costs $1!



1x sequencing 



2x sequencing 



4x sequencing 



8x sequencing 



Poisson Distribution 

The probability of a given number 
of events occurring in a fixed 
interval of time and/or space if 
these events occur with a known 
average rate and independently of 
the time since the last event. 
 
Formulation comes from the limit of 
the binomial equation 
 
Resembles a normal distribution, 
but over the positive values, and 
with only a single parameter.  
 
Key property:  
•  The standard deviation is the 

square root of the mean. 



Genome Coverage Distribution 

Expect Poisson distribution on depth!
•  Standard Deviation = sqrt(cov)!
!
This is the mathematically model => reality may be much worse!
•  Double your coverage for diploid genomes!
•  Can use somewhat lower coverage in a population to find common variants !
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Algorithms for Mapping & Genotyping 

3. Evaluate end-to-end match 

2. Lookup each segment and prioritize 

1. Split read into segments 

Fast gapped-read alignment with Bowtie 2 
Langmead & Salzberg. (2012) Nature Methods. 9:357-359. 

•  Distinguishing SNPs from sequencing 
error typically a likelihood test of the 
coverage 

–  Hardest to distinguish between errors 
and heterozygous SNP. 

–  Coverage is the most important factor! 
•  Target at least 10x, 30x more 

reliable 

The Sequence Alignment/Map format and SAMtools 
Li H et al. (2009) Bioinformatics. 25:16 2078-9 

QB Week 1: Sept 29!



(A) Plot of sequencing depth across a one megabase region of A/J chromosome 17 clearly shows both a region of 3-fold increased copy 
number (30.6–31.1 Mb) and a region of decreased copy number (at 31.3 Mb).  

Simpson J T et al. Bioinformatics 2010;26:565-567 

•  Identify CNVs through increased depth of coverage & increased heterozygosity 
–  Segment coverage levels into discrete steps 
–  Be careful of GC biases and mapping biases of repeats 

CNV calling  
Beware of (Systematic) Errors 



Structural Variations 

SVs tend to be flanked by repeats, making it hard to localize 
•  Cannot trust results from a single compress/expanded 

mate, look for a cluster of them 
•  Longer reads are the key to resolving them 
 
Circos plot of high confidence SVs specific to esophageal 
cancer sample 
•  Red: SV links 
•  Orange: 375 cancer genes 
•  Blue: 4950 disease genes 

 

Sample Separation: 2kbp 

Mapped Separation: 1kbp 



Beware of Mapping Errors 

Genomic Dark Matter: The reliability of short read mapping illustrated by the GMS. 
Lee and Schatz (2012) Bioinformatics. doi: 10.1093/bioinformatics/bts330 

•  Short read mapping is a essential for identifying 
mutations in the genome 
–  Not every base of the genome can mapped 

equally well, especially because of repeats 
 

•  Introduced a new probabilistic metric - the 
Genome Mappability Score - that quantifies 
how reliably reads can be mapped to every 
position in the genome 
–  We have little power to measure 11-13% of the 

human genome, including of known clinically 
relevant variations 

–  Errors in variation discovery are dominated by 
errors in low GMS regions 

High GMS 

Lo GMS 



Beware of GC Biases 

Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries.!
Aird et al. (2011) Genome Biology. 12:R18.!

Illumina sequencing does not 
produce uniform coverage 
over the genome!
•  Coverage of extremely high or 

extremely low GC content will 
have reduced coverage in Illumina 
sequencing!

•  Biases primarily introduced during 
PCR; lower temperatures, slower 
heating, and fewer rounds 
minimize biases!

•  This makes it very difficult to 
identify variants (SNPs, CNVs, etc) 
in certain regions of the genome!



Beware of Duplicate Reads 

The Sequence alignment/map (SAM) format and SAMtools. 
Li et al. (2009) Bioinformatics. 25:2078-9 
 
Picard: http://picard.sourceforge.net 



Beware of (Systematic) Errors 

Identification and correction of systematic error in high-throughput sequence data 
Meacham et al. (2011) BMC Bioinformatics. 12:451 
 
A closer look at RNA editing. 
Lior Pachter (2012) Nature Biotechnology. 30:246-247 



Genetic Basis of Autism Spectrum Disorders 

Complex disorders of brain development 
•  Characterized by difficulties in social interaction, 

verbal and nonverbal communication and repetitive 
behaviors.  

•  Have their roots in very early brain development, and 
the most obvious signs of autism and symptoms of 
autism tend to emerge between 2 and 3 years of age.  

 
U.S. CDC identify around 1 in 68 American children 
as on the autism spectrum 
•  Ten-fold increase in prevalence in 40 years, only 

partly explained by improved diagnosis and 
awareness.  

•  Studies also show that autism is four to five times 
more common among boys than girls.  

•  Specific causes remain elusive 
What is Autism? 
http://www.autismspeaks.org/what-autism 



Unified Model of Autism 
Sporadic Autism: 1 in 100 

Familial Autism: 90% concordance in twins 

Sporadic)muta-on)

Fails)to)procreate)

Legend 

A unified genetic theory for sporadic and inherited autism 
Zhao et al. (2007) PNAS. 104(31)12831-12836. 

Prediction: De novo mutations of high 
penetrance contributes to autism, especially 
in low risk families with no history of autism. 



Searching for the genetics behind 
human disorders and plant phenotypes 

Search Strategy 
•  Currently uses whole exome short read 

resequencing for economic reasons 

•  Collaborate with Lyon, McCombie, Tuveson, and 
Wigler labs to examine the genetic basis of 
cancer,  ASD, and other psychiatric disorders 

•  Also collaborating with the Lippman,  Ware, and 
Gingeras labs to study high value crops 

Are there any genetic variants present in affected 
individuals, that are not present or are present at a 

substantially reduced rate in their relatives? 



Exome-Capture Sequencing 

Exome sequencing as a tool for Mendelian disease gene discovery 
Bamshad et al. (2011) Nature Reviews Genetics. 12, 745-755 

Exome-capture reduces the costs 
of sequencing!
•  Currently targets around 50Mbp of 

sequence: all exons plus flanking regions!

•  WGS currently costs ~$2000 per 
sample, while WES currently costs ~$400 
per sample!

•  Coverage is highly localized around 
genes, although will get sparse coverage 
throughout rest of genome!



Exome sequencing of the SSC 
The year 2012 was an exciting year for 
autism genetics 
•  3 reports of >593 families from the Simons 

Simplex Collection (parents plus one child 
with autism and one non-autistic sibling) 

•  All attempted to find mutations enriched in 
the autistic children 

•  All used poor or no tools for indels:  
–  Iossifov (343 families) and O’Roak (50 families) used 

GATK UnifiedGenotype 
–  Sanders (200 families) didn’t attempt 

De novo gene disruptions in children on the autism spectrum 
Iossifov et al. (2012) Neuron. 74:2 285-299 
 

De novo mutations revealed by whole-exome sequencing are strongly associated with autism 
Sanders et al. (2012) Nature. 485, 237–241. 
 

Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations 
O’Roak et al. (2012) Nature. 485, 246–250. 



Variation Detection Complexity 

Analysis confounded by sequencing errors, localized repeats, allele biases, and mismapped reads 

..TTTAGAATAG-CGAGTGC...!
     ||||||| ||||!
     AGAATAGGCGAG!

             |||||!
             |||||!
      ATAGGCGAGTGC!

..TTTAG--------AGTGC...!
  |||||!
  TTTAGAATAGGC!

SNPs + Short Indels 
High precision and sensitivity 

“Long” Indels (>5bp) 
Reduced precision and sensitivity 

Sens: 48% 
FDR: .38%  



Scalpel: Haplotype Microassembly 
DNA sequence micro-assembly pipeline for accurate 
detection and validation of de novo mutations (SNPs, 
indels) within exome-capture data.  

Features 

1.  Combine mapping and assembly 

2.  Exhaustive search of haplotypes 

3.  De novo mutations 
NRXN1 de novo SNP  

(auSSC12501 chr2:50724605) 

Accurate de novo and transmitted indel detection in exome-capture data using microassembly. 
Narzisi et al. (2014) Nature Methods. doi:10.1038/nmeth.3069 



Scalpel Algorithm 

deletion insertion 

Extract reads mapping within the exon 
including (1) well-mapped reads, (2) soft-
clipped reads, and (3) anchored pairs 

Decompose reads into overlapping    
k-mers and construct de Bruijn graph 
from the reads   

Find end-to-end haplotype paths 
spanning the region 

Align assembled sequences to 
reference to detect mutations 



Experimental Analysis & Validation 

Selected one deep coverage exome 
for deep analysis 
•  Individual was diagnosed with 

ADHD and turrets syndrome 
•  80% of the target at >20x coverage 
•  Evaluated with Scalpel, SOAPindel, 

and GATK Haplotype Caller 
 
 
1000 indels selected for validation 
•  200 Scalpel 
•  200 GATK Haplotype Caller 
•  200 SOAPindel 
•  200 within the intersection 
•  200 long indels (>30bp) 
 
 



Scalpel Indel Validation 
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A B 

C’ 

D C B’ 

SOAPindel: ABC’BCB’D Scalpel: ABC’B’D 



Scalpel Indel Validation 
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Refined indel analysis 

Reducing INDEL calling errors in whole-genome and exome sequencing data 
Fang, H, Wu, Y, Narzisi, G, O’Rawe, JA, Jimenez Barrón LT, Rosenbaum, J, Ronemus, M, Iossifov I, Schatz, MC§, Lyon, GL§ 

http://www.biorxiv.org/content/early/2014/06/10/006148 

Examine sources of indel errors 
•  Experimental validation of indels called from 30x whole 

genome vs. 110x whole exome of the same sample 
•  Most of the errors due to short microsatellite errors 

introduced during exome capture, also misses most long 
indels 

•  Recommend WGS for indel analysis instead 

All 
INDELs 

Valid PPV INDELs 
>5bp 

Valid 
(>5bp) 

PPV 
(>5bp) 

Intersection 160 152 95.0% 18 18 100% 

WGS 145 122 84.1% 33 25 75.8% 

WES 161 91 56.5% 1 1 100% 



Revised Analysis of the SSC 

Constructed database of >1M transmitted and de novo indels 
Many new gene candidates identified, population analysis underway 



De novo mutation discovery and validation 

De novo mutations:  
Sequences not inherited from your parents. 

Reference:  ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
!

Father(1): !...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
Father(2): !...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
!

Mother(1): !...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
Mother(2): !...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
!

Sibling(1):!...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
Sibling(2): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
!

Proband(1): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
Proband(2):!...TCAAATCCTTTTAAT****AAGAGCTGACA...!
!

  4bp heterozygous deletion at chr15:93524061 CHD2 



•  In 593 family quads so far, we see significant enrichment in de novo 
likely gene disruptions (LGDs) in the autistic kids 
–  Overall rate basically 1:1 
–  2:1 enrichment in frameshift indels (35:16) 

•  Confirmed trends observed in previous studies, contributed 
dozens of new autism candidate genes. 
–  8 out of 35 indel LGDs in autistic children overlapped with the 

842 FMRP-associated genes 
–  Trends further confirmed in larger study over the entire 

collection that is currently under review 

De novo Genetics of Autism 

Accurate de novo and transmitted indel detection in exome-capture data using microassembly. 
Narzisi et al. (2014) Nature Methods doi:10.1038/nmeth.3069 
 
The burden of de novo coding mutations in autism spectrum disorders.  
Iossifov et al (2014) Under review. 



Break 



Cells & DNA 

Your specific nucleotide 
sequence encodes the 

genetic program for your 
cells and ultimately your 

traits 

Each cell of your body 
contains an exact copy 
of your 3 billion base 

pair genome. 



�10Soon et al., Molecular Systems Biology, 2013
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Short Read Applications 
•  Genotyping: Identify Variations 

•  *-seq: Classify & measure significant peaks 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 

TCGGAAATT 
CGGAAATTT 
CGGAAATTT 

GGAAATTTG 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
ATAC… …CC 

 GAAATTTGC 



*-seq in 4 short vignettes 
RNA-seq Methyl-seq 

ChIP-seq Single Cell-seq 



RNA-seq 

Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. 
Sørlie et al (2001) PNAS. 98(19):10869-74. 



RNA-seq Overview 

Sequencing 

Mapping  
& Assembly 

Quantification 



RNA-seq Overview 



RNA-seq Challenges!

Challenge 1: Eukaryotic genes are spliced!
Solution: Use a spliced aligner, and assemble isoforms!
!
TopHat: discovering spliced junctions with RNA-Seq. !
Trapnell et al (2009) Bioinformatics. 25:0 1105-1111!

Challenge 2: Read Count != Transcript abundance!
Solution: Infer underlying abundances (e.g. FPKM)!
!
Transcript assembly and quantification by RNA-seq!
Trapnell et al (2010) Nat. Biotech. 25(5): 511-515!

Challenge 3: Transcript abundances are stochastic!
Solution: Replicates, replicates, and more replicates!
!
RNA-seq differential expression studies: more sequence or more 
replication?!
Liu et al (2013) Bioinformatics. doi:10.1093/bioinformatics/btt688!



RNA-seq to determine the 
expression dynamics during 
development!
•  Laser microdissection to precisely 

extract tissue from developing 
organs!

•  Use RNA-seq to watch different 
classes of genes become activated 
at different stages of development!

•  When those genes are delayed or 
interupted, tomato mutants take 
on very different branching 
patterns.!



Methyl-seq 

Finding the fifth base: Genome-wide sequencing of cytosine methylation 
Lister and Ecker (2009) Genome Research. 19: 959-966 



Methylation & Epigenetics 



“The queen honey bee and her worker sisters 
do not seem to have much in common. Workers 
are active and intelligent, skillfully navigating the 
outside world in search of food for the colony. 
They never reproduce; that task is left entirely to 
the much larger and longer-lived queen, who is 
permanently ensconced within the colony and 
uses a powerful chemical influence to exert 
control. Remarkably, these two female castes are 
generated from identical genomes. The key to 
each female's developmental destiny is her diet 
as a larva: future queens are raised on royal 
jelly.  This specialized diet is thought to affect a 
particular chemical modification, methylation, of 
the bee's DNA, causing the same genome to be 
deployed differently. “!



Bisulfite Conversion 

Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications 
Krueger and Andrews (2010) Bioinformatics. 27 (11): 1571-1572. 

Treating DNA with sodium bisulfite 
will convert unmethylated C to T!
!
•  5-MethyC will be protected and not change, 

so can look for differences when mapping!

•  Requires great care when analyzing reads, 
since the complementary strand will also be 
converted (G to A)!

•  Typically analyzed by mapping to a “reduced 
alphabet” where we assume all Cs are 
converted to Ts once on the forward strand 
and once on the reverse!



Bisulfite Conversion 

Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications 
Krueger and Andrews (2010) Bioinformatics. 27 (11): 1571-1572. 

Treating DNA with sodium bisulfite 
will convert unmethylated C to T!
!
•  5-MethyC will be protected and not change, 

so can look for differences when mapping!

•  Requires great care when analyzing reads, 
since the complementary strand will also be 
converted (G to A)!

•  Typically analyzed by mapping to a “reduced 
alphabet” where we assume all Cs are 
converted to Ts once on the forward strand 
and once on the reverse!



ChIP-seq 

Genome-wide mapping of in vivo protein-DNA interactions. 
Johnson et al (2007) Science. 316(5830):1497-502 



ChIP-seq 

Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data 
Valouev et al (2008) Nature Methods. 5, 829 - 834 

Goals:!
•  Where are transcription 

factors and other 
proteins binding to the 
DNA?!

•  How strongly are they 
binding?!

•  Do the protein binding 
patterns change over 
developmental stages or 
when the cells are 
stressed?!



Related Assays 

ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions 
Furey (2012) Nature Reviews Genetics. 13, 840-852 



HI-C: Mapping the folding of DNA 

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome 
Liberman-Aiden et al. (2009) Science. 326 (5950): 289-293 



HI-C: Mapping the folding of DNA 

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome 
Liberman-Aiden et al. (2009) Science. 326 (5950): 289-293 



Gene Regulation in 3-dimensions 

The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome 
Engreitz et al. (2013) Science. 341 (6147) 

Fig 6. A model for how Xist exploits and alters three-dimensional 
genome architecture to spread across the X chromosome.!



Single Cell Sequencing!

Cancer genomics: one cell at a time!
Navin et al (2014) Genome Biology. 15:452!

Germ Cells!

Recombination & 
crossover events!

Heterogeneous Tumors !

Clonal expansion!

Heterogeneous Tissues: 
blood and lymph!

Isolating unique 
cell types!



Bulk vs Single Cell 



Copy Number Variants 



Copy Number Variants 

Deletion 

Structural Variation 



Copy Number Variants 

Amplification 

Structural Variation 



CNV Analysis Overview 





Other Examples: CNV + RNA 



OMICS Summary 

•  DNA sequencing is extremely powerful and 
widespread to genotype large populations 
–  The types of questions we ask have fundamentally 

changed over the last 10 years 
–  Expect millions of human genomes over your PhD 

•  DNA sequencing is used for much more than 
sequencing DNA! 
–  Flexible technology to observe the dynamics inside cells 
–  Count the frequency of different molecules 
–  See the “shadow” of chemical modification 
–  See the “shadow” of molecules binding 

•  Coming up 
–  Human Medical Genetics (Lyon) 
–  Expression analysis (Gillis) 

–  Genetics of modern and ancient humans (Schatz) 
–  Group Discussion on ENCODE 



Thank you! 
 

http://schatzlab.cshl.edu 
@mike_schatz 
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